The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
给定的用户输入的自动生成平面图在建筑设计中具有很大的潜力,最近在计算机视觉社区中探索了。但是,大多数现有方法以栅格化图像格式合成平面图,这些图像很难编辑或自定义。在本文中,我们旨在将平面图合成为1-D向量的序列,从而简化用户的互动和设计自定义。为了产生高保真矢量化的平面图,我们提出了一个新颖的两阶段框架,包括草稿阶段和多轮精炼阶段。在第一阶段,我们使用图形卷积网络(GCN)编码用户的房间连接图输入,然后应用自回归变压器网络以生成初始平面图。为了抛光最初的设计并生成更具视觉吸引力的平面图,我们进一步提出了一个由GCN和变压器网络组成的新颖的全景精炼网络(PRN)。 PRN将初始生成的序列作为输入,并完善了平面图设计,同时鼓励我们提出的几何损失来鼓励正确的房间连接。我们已经对现实世界平面图数据集进行了广泛的实验,结果表明,我们的方法在不同的设置和评估指标下实现了最先进的性能。
translated by 谷歌翻译
一个自动驾驶感知模型旨在将3D语义表示从多个相机集体提取到自我汽车的鸟类视图(BEV)坐标框架中,以使下游规划师接地。现有的感知方法通常依赖于整个场景的容易出错的深度估计,或者学习稀疏的虚拟3D表示没有目标几何结构,这两者在性能和/或能力上仍然有限。在本文中,我们介绍了一种新颖的端到端体系结构,用于自我3D表示从任意数量的无限摄像机视图中学习。受射线追踪原理的启发,我们将“想象眼睛”的两极分化网格设计为可学习的自我3D表示,并通过适应性注意机制与3D到2D投影一起以自适应注意机制的形式制定学习过程。至关重要的是,该公式允许从2D图像中提取丰富的3D表示,而无需任何深度监督,并且内置的几何结构一致W.R.T. bev。尽管具有简单性和多功能性,但对标准BEV视觉任务(例如,基于摄像机的3D对象检测和BEV细分)进行了广泛的实验表明,我们的模型的表现均优于所有最新替代方案,从多任务学习。
translated by 谷歌翻译
良好的善解人意对话系统应首先跟踪并理解用户的情绪,然后以适当的情感回复。但是,目前对此任务的方法要么集中于提高对用户情绪的理解或提出更好的反应策略,而且很少有作品同时考虑这两种工作。我们的工作试图填补这一空缺。受到任务导向对话系统的启发,我们提出了一种具有情感感知对话管理的新颖善解人意的响应生成模型。情绪感知对话管理包含两个部分:(1)情绪状态跟踪保持当前用户的情绪状态,(2)善解人意的对话策略选择预测目标情绪和用户的意图,基于情绪状态跟踪的结果。然后,预测信息用于指导响应的产生。实验结果表明,与自动评估和人类评估下的几个基准相比,动态管理不同的信息可以帮助模型产生更多的移情反应。
translated by 谷歌翻译
最近,变压器架构已经证明了其在自然语言处理(NLP)和计算机视觉(CV)任务中的重要性。虽然已知其他网络模型容易受到后门攻击的影响,但是在模型中嵌入触发器并在呈现触发器时控制模型行为,众所周知,这种攻击是否仍然在变压器模型上仍然有效,如果是的话,是否有效它可以以更具成本效益的方式完成。在本文中,我们提出DBIA,一种对CV导向的变压器网络的一种新型无数据响应攻击,利用变压器的固有注意机制来产生触发器并使用中毒代理数据集注入后门。我们在两个主流图像分类任务中基于三个基准变压器,即Vit,Deit和Swin变压器进行了广泛的实验..,Cifar10和ImageNet。评估结果表明,消耗较少的资源,我们的方法可以嵌入高层的成功率和对受害者变压器性能的低影响。我们的代码可在https://anonmous.4open.science/r/dbia-825d获得。
translated by 谷歌翻译
尽管取得了巨大的成功,但深入的学习严重遭受鲁棒性;也就是说,深度神经网络非常容易受到对抗的攻击,即使是最简单的攻击。灵感来自脑科学最近的进步,我们提出了一种新的内部模型(DIM),这是一种基于新的生成自动化器的模型来解决这一挑战。模拟人类大脑中的管道进行视觉信号处理,暗淡采用两级方法。在第一阶段,DIM使用丹组器来减少输入的噪声和尺寸,反映了塔马拉姆的信息预处理。从主视觉皮质中的内存相关迹线的稀疏编码启发,第二阶段产生一组内部模型,一个用于每个类别。我们评估了42次对抗攻击的衰弱,表明Dim有效地防御所有攻击,并且优于整体鲁棒性的SOTA。
translated by 谷歌翻译
A crucial issue of current text generation models is that they often uncontrollably generate factually inconsistent text with respective of their inputs. Limited by the lack of annotated data, existing works in evaluating factual consistency directly transfer the reasoning ability of models trained on other data-rich upstream tasks like question answering (QA) and natural language inference (NLI) without any further adaptation. As a result, they perform poorly on the real generated text and are biased heavily by their single-source upstream tasks. To alleviate this problem, we propose a weakly supervised framework that aggregates multiple resources to train a precise and efficient factual metric, namely WeCheck. WeCheck first utilizes a generative model to accurately label a real generated sample by aggregating its weak labels, which are inferred from multiple resources. Then, we train the target metric model with the weak supervision while taking noises into consideration. Comprehensive experiments on a variety of tasks demonstrate the strong performance of WeCheck, which achieves a 3.4\% absolute improvement over previous state-of-the-art methods on TRUE benchmark on average.
translated by 谷歌翻译
Recent advances in operator learning theory have improved our knowledge about learning maps between infinite dimensional spaces. However, for large-scale engineering problems such as concurrent multiscale simulation for mechanical properties, the training cost for the current operator learning methods is very high. The article presents a thorough analysis on the mathematical underpinnings of the operator learning paradigm and proposes a kernel learning method that maps between function spaces. We first provide a survey of modern kernel and operator learning theory, as well as discuss recent results and open problems. From there, the article presents an algorithm to how we can analytically approximate the piecewise constant functions on R for operator learning. This implies the potential feasibility of success of neural operators on clustered functions. Finally, a k-means clustered domain on the basis of a mechanistic response is considered and the Lippmann-Schwinger equation for micro-mechanical homogenization is solved. The article briefly discusses the mathematics of previous kernel learning methods and some preliminary results with those methods. The proposed kernel operator learning method uses graph kernel networks to come up with a mechanistic reduced order method for multiscale homogenization.
translated by 谷歌翻译
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning. By exploiting historical transitions, a policy is trained to maximize a learned value function while constrained by the behavior policy to avoid a significant distributional shift. In this paper, we propose our closed-form policy improvement operators. We make a novel observation that the behavior constraint naturally motivates the use of first-order Taylor approximation, leading to a linear approximation of the policy objective. Additionally, as practical datasets are usually collected by heterogeneous policies, we model the behavior policies as a Gaussian Mixture and overcome the induced optimization difficulties by leveraging the LogSumExp's lower bound and Jensen's Inequality, giving rise to a closed-form policy improvement operator. We instantiate offline RL algorithms with our novel policy improvement operators and empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark.
translated by 谷歌翻译
Universal Image Segmentation is not a new concept. Past attempts to unify image segmentation in the last decades include scene parsing, panoptic segmentation, and, more recently, new panoptic architectures. However, such panoptic architectures do not truly unify image segmentation because they need to be trained individually on the semantic, instance, or panoptic segmentation to achieve the best performance. Ideally, a truly universal framework should be trained only once and achieve SOTA performance across all three image segmentation tasks. To that end, we propose OneFormer, a universal image segmentation framework that unifies segmentation with a multi-task train-once design. We first propose a task-conditioned joint training strategy that enables training on ground truths of each domain (semantic, instance, and panoptic segmentation) within a single multi-task training process. Secondly, we introduce a task token to condition our model on the task at hand, making our model task-dynamic to support multi-task training and inference. Thirdly, we propose using a query-text contrastive loss during training to establish better inter-task and inter-class distinctions. Notably, our single OneFormer model outperforms specialized Mask2Former models across all three segmentation tasks on ADE20k, CityScapes, and COCO, despite the latter being trained on each of the three tasks individually with three times the resources. With new ConvNeXt and DiNAT backbones, we observe even more performance improvement. We believe OneFormer is a significant step towards making image segmentation more universal and accessible. To support further research, we open-source our code and models at https://github.com/SHI-Labs/OneFormer
translated by 谷歌翻译